A Taylor-Made Design of Phenoxyfuranone-Type Strigolactone Mimic

نویسندگان

  • Kosuke Fukui
  • Daichi Yamagami
  • Shinsaku Ito
  • Tadao Asami
چکیده

Strigolactones are a class of plant hormones that inhibit axillary bud outgrowth and are released from plant roots to act as a rhizosphere communication signal. The Orobanchaceae parasitic plant Striga hermonthica perceives strigolactone as its germination signal, indicating host presence. After germination, the Striga plant parasitises the host plant and suppresses host growth by draining photosynthetic products, water and other essential nutrients. Because of this way of life, this parasite threatens crop production in sub-Saharan Africa with infestation in crop fields and crop devastation. Crop protection in such areas is among the most concerning problems to be dealt with as immediately as possible. With respect to crop protection from Striga, many strigolactone agonists have been developed and used in research to reveal Striga biology, and have contributed to development of crop protection methods. However, an effective method has yet to be found. In a previous study, we reported debranones as a group of strigolactone mimics that inhibit axillary buds outgrowth with moderate stimulation activity for Striga germination. Debranones would be accessible because they are simply synthesized from commercially available phenols and bromo butenolide. Taking this advantage of debranones for Striga research, we tried to find the debranones stimulating Striga seed germination. To modulate functional selectivity and to enhance germination inducing activity of debranones, we studied structure-activity relationships. We investigated effects of substituent position and functional group on debranone activity and selectivity as a strigolactone mimic. As a result, we improved stimulation activity of debranones for Striga seed germination by chemical modification, and demonstrated the pharmacophore of debranones for selective modulation of distinct strigolactone responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Lead Chemical for Strigolactone Biosynthesis Inhibitors

Several triazole-containing chemicals have previously been shown to act as efficient inhibitors of cytochrome P450 monooxygenases. To discover a strigolactone biosynthesis inhibitor, we screened a chemical library of triazole derivatives to find chemicals that induce tiller bud outgrowth of rice seedlings. We discovered a triazole-type chemical, TIS13 [2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol...

متن کامل

Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108.

Strigolactones were recently identified as a new class of plant hormones involved in the control of shoot branching. The characterization of strigolactone mutants in several species has progressively revealed their contribution to several other aspects of development in roots and shoots. In this article, we characterize strigolactone-deficient and strigolactone-insensitive mutants of the model ...

متن کامل

Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi

Although most land plants are hosts for arbuscular mycorrhizal fungi (AMF), a small number of plant families are arbuscular mycorrhizal (AM) nonhosts. There are indications that strigolactone levels in root exudates of AM nonhost plants are lower than in AM host plants, and it has been shown that in the strigolactone-deficient rms1 mutant (ccd8) of the AM host plant pea, the AMF colonization of...

متن کامل

Strigolactone Can Promote or Inhibit Shoot Branching by Triggering Rapid Depletion of the Auxin Efflux Protein PIN1 from the Plasma Membrane

Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive propert...

متن کامل

Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis.

During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017